
 

 

  
Abstract— This work is devoted to the asymptotic solutions of 

integral boundary value problem for the Inter-linear second order 
differential equation of Fredholm type. Studying an integral boundary 
value task, obtaining solution assessment of the set singular perturbed 
integral boundary value problem and difference estimate between the 
solutions of singular perturbed and unperturbed tasks; determination 
of singular perturbed integral boundary value problem solution 
behavior mode and its derivatives in discontinuity (jump) of the 
considered section and determination of the solution initial jumps 
values at discontinuity and of an integral member of the equation, as 
well, creation of asymptotic solution expansion assessing a residual 
member with any range of accuracy according to a small parameter 
by means of Cauchy task with an initial jump, at that selection of 
initial conditions due to singular perturbed boundary value problem 
solution behavior mode and its derivatives in the jump point. In the 
paper there applied methods of differential and integral equations 
theories, boundary function method, method of successive 
approximations and method of mathematical induction. 
 

Keywords—Asymptotic solutions, differential equations, integral 
boundary problem, integro-partial differential equations, method 
substantiation, singular, small parameter. About four key words or 
phrases in alphabetical order, separated by commas.  

I. INTRODUCTION 
HEME actuality. Overall interest of mathematicians in 
singular perturbed equations determined with the fact, that 

they function as mathematical models in many applied tasks, 
connected with processes of diffusion, heat and mass transfer, 
in chemical kinetics and combustion, in the problems of heat 
distribution in slender bodies, in semiconductor theories, 
quantum mechanics, biology and biophysics and many other 
branches of science and engineering. Singular perturbed 
equations is an important class of differential equations.  

Theory of singular perturbed equations developed in the 50-
th, starting with fundamental works of an academician of 
Russian Academy of Sciences Tikhonov A.N [1-3], 
considering the qualitative theory of ordinary differential 
equations with small parameter upon derivatives. Tikhonov 
A.N. proved the theorem on limit transfer, establishing a 
connection between the solution of degenerated (unperturbed) 
problem, obtained from the initial task upon a small parameter 
 

 
 

similar to zero and from solution of initial singular perturbed 
tasks for the systems of nonlinear ordinary differential 
equations.  

Member-Correspondent of RAS Lyusternik L.А. and Vishik 
M.I. [4,5] elaborated effective asymptotic technique of 
singular perturbed linear ordinary differential equations and 
the ones in partial derivatives; Vasiljyeva А.B. [6] developed 
asymptotic technique of solution of initial problem researched 
by Tikhonov A.N. RAS Member-Correspondent Imanaliyev 
М.I. [7] elaborated asymptotic technique of solution of 
singular perturbed systems of nonlinear integro-partial 
differential equations, which gained further development in 
many subsequent works and got named the boundary function 
method. At present, there are various modifications of the 
method thereof in the works of Trenogin V.A. [8], Butuzov 
V.F. [9] and the others. In particular, there offered an angular 
boundary function method for equations in partial derivatives 
in the areas, the boundaries of which contain angular points. 

II. ASYMPTOTIC SOLUTIONS OF INTEGRAL 
BOUNDARY VALUE PROBLEM  

Setting up a problem. Let us consider the following 
Fredholm-type integro- partial differential equation   
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with integral boundary conditions 
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where 0>ε - a small parameter, 1,0, =iai  − certain 

acquainted permanents, ),(),(),(),(),( tctbtFtBtA ii  

1,0),,( =ixtK i  − certain acquainted functions, defined in 
the domain )10,10( ≤≤≤≤= xtD [10]. 

Solution of ),( εty  singular perturbed integral boundary 
value problem (1), (2) at ε  small parameter vanishing will not 
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tend to a solution )(ty  of an ordinary unperturbed (singular) 
task, obtained from (1), (2) at 0=ε : 
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with boundary condition at 0=t  or at 1=t , but tends to the 
solution )(0 ty  , changed, unperturbed equation  
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with changed boundary condition at the point 0=t ; 

[ ] dttytbtytbay ∫ ++∆+=
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or with changed boundary condition at the point 1=t :                                                                    
                                    

[ ] dttytctytcay ∫ ++∆+=
1

0
0100110 )()()()()1(              (5) 

Assume, that: 
I. Functions )(),(),(),(),( tctbtFtBtA ii  и 1,0,),( =ixtKi  are 
sufficiently smooth in the domain )10,10( ≤≤≤≤= xtD ; 
II. Function )(tA  at the segment [0,1] satisfies inequation: 

10,0)( ≤≤>≡≥ tconsttA γ ; 
III. Number 1=λ  at sufficiently small ε  is not a proper value 
of the kernel ),,( εstJ : 
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where the function ),( stK expressed with a formula 
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IV. True an inequation: 

( )[

( ) ,0)(),()(),()()(

)0,()()0,()(1

1

101

1

0
10

0
0

≠















′+++

+′+−≡∆

∫

∫

dssdtstKtbstKtbsb

sKsbsKsb

s
σ

 

where function )(tσ  has a view 
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and function ),( stR −kernel resolvent ),( stJ , and function 
)(tϕ  may be represented as                  
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V. True an equation:  
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With reference to 1.7, section 1 it can be seen, that solution 
),( εty  of integral boundary value problem (1), (2) at the 

point 0=t  is limited and its first derivative ),( εty′  at the 

point 0=t  has unlimited growth of the order 






Ο

ε
1  at 

0→ε . Hence, for creating the boundary value problem 
solution asymptotics (1), (2), let’s preliminarily consider an 
auxiliary Cauchy problem with an initial jump, i.e., consider an 
equation (1) with initial conditions at the point 0=t : 
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where ( )εαα = − regularly dependent on ε  permanent, 
represented as:  

    ( ) +++= 2
2

10 αεεααεα                     (7) 

Let us define ( )εα  in such a way, that the solution 
),,( εαty  of the problem (1), (6) was the solution of 

boundary value task (1), (2), i.e., to fulfill the second condition 
(2):   

    [ ] dttytctytcay ∫ ′++=
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0
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Creating asymptotic solution of Cauchy problem with an 
initial jump. Solution ),,(),( εαε tyty =  of Cauchy 
problem (2.1), (2.6) we will search as the sum: 

                                       
 ),()(),( τε εε wtyty +=                  (9) 

where ετ /t=  - boundary-layer independent invariable, 
)(tyε -solution’s regular part, defined at the section [0, 1] and 

)(τεw -boundary-layer part of the solution, defined at 0≥τ . 
Preliminarily multiply equations (1) by ε and further insert 
formula (9) into equation (1). Thereupon we obtained:  
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where the point ( )⋅ − a derivative per τ beyond integral 
members and a derivative per  х in integral members. If we 

make replacement ∞=≤≤==
ε

εε 10,, sdsdxsx , then 

from here it follows that: 
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And now let’s write out separately the equations with 
factors, dependent on t , and separately equation with factors 
dependent on τ [11]. Then from (10) we obtain following 
equations separately for )(tyε  and separately for )(twε : 
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Let’s insert (9) into initial conditions (6), (7):  
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Solutions )(tyε  and )(τεw  of equations (11) and (12) we 
will search as following series in terms of a small parameterε :  
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Functions ),(),(),( ετετετ ibBA  and ),( stKi ε  expand in 
series of Taylor development: 
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Inserting transformations in due form (14), (15) in the 
equations (11), (12) we obtain  
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Similarly insert transformations (14), (15) into initial 
conditions (13). Thereupon we obtain: 
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We compare factors at like powers ε . Thereupon from (16) 
we obtain 
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Similarly, dealing with (2.17) we will have:  
      ,0)()0()( 00 =+ ττ wAw                      (210) 

         ),()()0()( τττ kkk wAw Φ=+              (21k)  
where a function )(τkΦ  is expressed through kiwi <),(τ :  
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Now we compare in (2.18) the factors at like powersε :  
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.1,)0()0(1 ≥=+′− kwy kkk α  
Let us consider the problems (190), (210) and (230), defining 
zero-order approximations )(0 ty  and )(0 τw . It follows 
from here, that supplementary condition (230) is insufficient 
unambiguous definition )(0 ty  and )(0 τw  from equations 
(190), (210). For zero-order approximation unambiguous 
definition there is needed three initial conditions, and initial 
conditions (230) consist of two conditions. For one missing 
initial condition we use a condition of boundary-layer 
solution )(0 τw , i.e., 

.0)(,0)( 00 =∞=∞ ww   
For this purpose, we integrate an equation (210) according to 
τ  from 0 to ∞ . Thereafter, owing to boundary layer rating 

)(0 τw  we obtain  
.0)0()0()0( 00 =+ wAw                                       (24). 

From that expression with account of initial condition (230) for 
)(0 τw  we obtain: .0)0()0( 00 =+ wAα  

From here we will find the missing initial condition 
for )(0 τw :  
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Let’s refer to the equation (190) with an initial condition (230), 
(25). As the function )(0 t∆ , entering into an equation (190), is 
defined with the formula (20), then in virtue of boundary layer 
rating )(0 τw  and (25) we have:  
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 Thus, equation (190) with an initial condition (230) due to 
(25), (26) will be as follows:        
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 By this means, zero-order approximation )(0 ty  of the 
solution regular part 10),( ≤≤ ttyε  is defined from 
integro-differential equation of Fredholm-type first order with 
an integral initial condition (27), and values of initial jumps at 
the point 0=t  and an integral member of the equation 

)(, 00 t∆∆ , entering into the problem (27), are defined from 

the formula (28), and zero-order approximation )(0 τw  of 
boundary layer of the solution 0),( ≥ττεw  is defined 
from the equation (210) with initial conditions (230), (25) [12]: 
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Now, let us consider the problems (19k), (21k), (23k), defining 
k-approximation )(),( τkk wty  of the solution ),( εty  of 
Cauchy task with an initial jump (1), (6). From here, it  follows 
that supplementary condition (23k) is not enough for 
unambiguous definition of )(tyk  and )(τkw . To define the 
missing initial condition we use the condition of boundary 
layer rating solution )(τkw : 
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and use the boundary-layer rating condition. Then we obtain 
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Let us point out, that improper integrals, entering into (2.30), 
(31), converge (see below). The problem (19k), (23k) due to 
the function boundary layer rating )(τkw  has a view: 
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Therefore, the task (21k), (23k) for )(τkw  with account of 
(31) receives a view:        

      ),()()0()( τττ kkk wAw Φ=+   
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A

w

kkk
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α

ττα



            (34) 

 
where )(τkΦ expressed by the formula (22) [14]. 

Thus, k-approximation 1),( ≥ktyk  of the solution 
regular part 10),( ≤≤ ttyε

 defined proceeding from the 
problem (32), k-approximation 1),( ≥kwk τ  of the solution 
boundary-layer part 0),( ≥ττεw  is defined from the problem 
(34). 

Determination of solution asymptotic coefficients of 
Cauchy problem with an initial jump  

Let us consider the problem (27) to determine zero 
approximation )(0 ty  of the solution regular part )(tyε . From 
here, we have the following task:                                          

           )()(
)(
)()( 000 tFty

tA
tBty =+′ ,                     (35) 

[ ]dttytbtytbay ∫ ′++∆+=
1

0
0100000 )()()()()0( , 

where the function )(0 tF  has a view  
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and )(, 00 t∆∆  expressed by formulae (28). Solving the 
equation (35) according to the known formula for the first-
order linear equation, we obtain,  

∫+=
t
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0
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where the function ),( stK  has a view from the condition III. 
We insert formula (37) into (36): 
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Applying Dirichlet formula for double integral of the formula 
(38) and introducing indication: 
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tA

y
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we obtain the following integral equation of Fredholm  
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1

0
000 )(),()()( dssFstJtftF ,       (40) 

where the kernel ),( stJ has a view from the condition III. As 
the kernel ),( stJ  according to the condition III is not located 
on the integral equation spectrum (40), then integral equation 

(40) at the section [0,1] has the only solution )(0 tF  and is 
expressed by the formula  

  ∫+=
1

0
000 )(),()()( dssfstRtftF ,        (41) 

where ),( stR  - kernel resolvent ),( stJ .  Let us insert now 
(39) into (41):  
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Subsequently we have  
                        )()0()()( 00 tyttF σω += ,          (42) 

where the function )(tω  is expressed by the formula  
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0
00 ))()((

)(
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1)( dsssF

sA
stRttF

tA
tω ,               (43) 

and the function )(tσ  is presented from the condition IV.  
Now the formula (37) in virtue of (2.42) is presented in the 
form of the formula  
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Let’s define unknown initial condition )0(0y . For that 
purpose, the formula (44) is inserted into initial condition (35). 
Then we will have:  
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Thereupon we obtain the initial condition )0(0y : 
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where 00
0 ≠∆  is expressed by the formula from the condition 

IV. If an expression (45) is inserted into (37), we obtain the 
solution )(0 ty  of regular part zero approximation of )(tyε  
solution:  
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or with account of (42), (45) we have  
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where the function )(tσ  is defined by the formula from the 
condition IV, the function )(tω  - from the formula (43), which 
depends on )(0 t∆  and )(, 00 t∆∆  - from the formula (28). 
 Let us consider the problem (29) to determine zero 
approximation 0),(0 ≥ττw  of boundary layer part 

of )(τεw solution:  
0)()0()( 00 =+ ττ wAw  , 

00
0

0 )0(,
)0(

)0( α
α

=−= w
A

w  .        (47) 

Hence, directly follows 
τατ )0(

00 )( Aew −= .                  (48) 
Integrating the equation (2.48) with an initial condition (47), 
we obtain 

        0,
)0(

)( )0(0
0 ≥−= − τ

α
τ τAe

A
w .       (49) 

 Therefore, zero approximations )(),( 00 τwty of solving 
Cauchy problem with an initial jump (1), (6) are fully defined 
and expressed by formulae (46), (49). 
 To create any approximations 1),( ≥кwк τ  of the solution 
boundary layer part we turn to the problem (34). Let us 
consider the problem (34) for к=1: 
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)0()0( 011 yw ′−= α , 
where the function )(1 τΦ due to (22) and (49) has a view 
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. 

From here, it can be seen that the function )(1 τΦ  is the first 
degree boundary-layer multinomial of Lyusternik-Vishik [15]. 
It follows that, improper integral, entering into an initial 
condition, converged. It is possible to make sure that the 
solution )(1 τw  of the problem thereof has a view:  

0,)()( )0(
11 ≥= − τττ τAeLw , 

where )(1 τL −a certain multinomial as regard to τ . Therefore, 
the solution )(1 τw  is a boundary-layer multinomial of 
Lyusternik-Vishik. Let us assume that, solution of the problem 
(34) to (к-1)- approximation is a boundary-layer multinomial 
of  Lyusternik-Vishik  
 

    0,1,1,)()( )0( ≥−== − τττ τ кieLw A
ii ,       (50) 

where )(τiL −a certain known multinomial according to 
τ .then it is possible to prove by an induction method that the 
solution )(τкw  to the problem (34) is Lyusternik-Vishik 
multinomial:  

   0,)()( )0( ≥= − τττ τA
кк eLw ,            (51) 

where )(τкL −a known multinomial as regard to τ . 
 Now let us turn to the problem (33) with account of (50) to 
define 1),( ≥кtyк  of a regular of the solution )(tyε  of 
Cauchy problem with initial (1), (6): 
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where functions )(),( ttF кк ∆  are expressed by the formulae 
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 Having divided an equation (52) to )(tA  and solved it we 
obtained:  
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Where the function )(tFк  has a view:  
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We insert (54) into (55). Then for )(tFк  we obtain integral 
equation of Fredholm type (40):  
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where a constant term )(tf к  has a view: 
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An integral equation (56) due to the condition III at the section 
[0, 1] has the only solution by means of resolvent ),( stR  of 
the kernel ),( stJ :  

∫+=
1

0
)(),()()( dssfstRtftF ккк .        (58) 

Inserting (57) into (58), we obtain  
        )()0()()( tyttF ккк σω += ,           (59) 

where )(tσ  has a view from the condition IV and the function 

)(tкω is expressed by the formula  
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 Now the formula (54) by virtue of (59) presented as  
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Inserting (61) into an integral initial condition (52), we obtain 
an equation for determining )0(кy : 
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As in compliance with the condition IV, the value 00
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subsequently defining an initial condition )0(кy  and 
inserting it into the formula (54), we will have the solution 
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or due to (2.59):  
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where ккa ∆,  and )(tкω  are expressed by the formulae (53) 
and (60), and functions )(),,( tstK σ have a view from the 
conditions III, IV. 
 Therefore, any regular part asymptotic approximations 

0,10),( ≥≤≤ кttyк  and boundary layer part 
0,0),( ≥≥ кwк ττ  of the solution ),( εty  of Cauchy problem 

with an initial jump (1), (6) are constructed and expressed by 
formulae (46), (49), (51) and (62) [16]. 
 Lemma 2.1. Coefficients 0),(),( ≥кwty кк τ  of regular part 
splitting at 10 ≤≤ t  )(tyε  and boundary layer at 0≥τ  of 

the function part )(τεw  have following assessments:  

1,0,10,)()( =≤≤≤ itCty i
к , 

0,0,)(
)( )0( ≥≥≤ − кeCL

d
wd A

i
к

i
ττ

τ
τ τ ,                          (63) 

where 0,0)0( >> CA  a certain permanent, independent on ε  

and ττ )0()( AeL − −Lyusternik-Vishik boundary-layer 
multinomial.  
Proof. Let us prove the assessments (63) by the method of 
mathematical induction. First we will prove assessments (63) 
for zero approximation )(0 ty  and )(0 τw . Let us consider the 

solution )(0 τw  of the problem (47), which is distinctly 
expressed by the formula (49): 

0,
)0(

)( )0(0
0 ≥−= − τ

α
τ τAe

A
w . 

The function thereof is Lyusternik-Vishik boundary-layer 

multinomial of zero degree, i.e., 1)(,
)0(

0 == τ
α

L
A

C . 

From here there directly follow assessments (63) for )(0 τw  
and )(0 τw  [17]. 
Let us consider now the formula (46) and its derivative with 
account of the function ),( stK from the condition III:  
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Herein 00
0 ≠∆  and 0∆  are accordingly defined from the 

condition IV and (28), functions )(),(0 ttF ω  are accordingly 

expressed by the formulae (42), (43), the function ),( stK  
takes the form from the condition III, and functions 

)(),( 10 tbtb  and permanent 0a  - derived boundary 
conditions (2). From (46), (64) due to the condition I we 
directly obtain values (63) for )(0 ty  and )(0 ty′ . Therefore, 
values (63) have been proved for zero 
approximation )(0 ty and )(0 τw . 

 Let us assume, that assessed values (63) are true till (к-1)-
approximation inclusively. Let us prove assessed values (63) 
for к-approximation )(tyк  and )(τкw . Proceeding from the 
formula (51) we directly receive assessed values (63) for 

)(τкw  and )(τкw . Let us consider the formula (62) and its 
derivative  
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where ккa ∆,  and )(tкω  are accordingly defined from (53) 
and (60), аnd )(tFк  is expressed by the formula (59). 
Evaluating (62), (65) and taking into account the conditions I-
IV, (53), (59), (60), we obtain assessed values (63) for )(tyк  
and )(tyк′ . Lemma has been proved [18]. 

III. RESULTS 
1.There have been created asymptotic Cauchy function 

representations and boundary functions of an integral 
boundary value problems by means of fundamental system of 
singular perturbed linear like differential equation solutions. 
There obtained Green functions, expressed with Cauchy 
functions and boundary functions.  

2.We obtained analytical solution representation of an 
integral boundary problem.  

3. We received in the space of continuous functions the 
asymptotic per small parameter solution assessments of 
integral boundary problem and it is stated that integral 
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boundary value problem at discontinuity possesses the 
phenomenon of zero order initial jump. 

IV. CONCLUSION 
Work’s outcomes represent a theoretical value. We obtained 

asymptotic formulae for end problem solution Thesis’s results 
can be applied in scientific researches on the singular 
perturbed equation theory. Obtained asymptotic decomposition 
solutions are applicable as initial approximations for numerical 
techniques implementation.   
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